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PHASE-LAG ANALYSIS OF IMPLICIT RUNGE-KUTTA METHODS*

P. J. VAN DER HOUWENT anD B. P. SOMMEIJERY

Abstract. We analyse the phase errors introduced by implicit Runge-Kutta methods when a linear
inhomogeneous test equation is integrated. It is shown that the homogeneous phase errors dominate if long
interval integrations are performed. Homogeneous dispersion relations for the special class of DIRK methods
are derived and a few high-order dispersive DIRK methods are constructed. These methods are applied to
systems of linear differential equations with oscillating solutions and compared with the ““conventional®
DIRK methods of Ngrsett and Crouzeix.
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1. Introduction. In this paper, special diagonally implicit Runge-Kutta (DIRK)
methods will be constructed for integrating systems of ODEs of the form

d
.‘;(tt)=f(t’y(t)), y(to)=yo,

(1.1)

when we know in advance that the solution is oscillating. Analogously to a generally
adopted approach in the phase-lag analysis of numerical methods for second-order
equations with oscillating solutions, we use the equation (cf. [1], [3], [4], [7], [8].

[12]-[16])

dy(1)

(1.2) i

=iwy(1)+8e“r, 8w 0,eR, w#w,
as a test equation. Here w represents a natural (or eigen) frequency of the system and
w, represents the frequency of the forced solution component.

In § 2, we start by deriving explicit expressions for the phase lag introduced by
general, implicit Runge-Kutta (RK) methods. The phase lag is composed of two parts:
the homogeneous phase lag corresponding to the eigenmodes in the solution, and the
inhomogeneous phase lag corresponding to the forced solution component. We will
show that in calculations over long intervals of integration, the homogeneous phase
lag tends to increase linearly, whereas the inhomogeneous phase error is constant. For
this reason, we concentrate on the reduction of homogeneous phase errors.

In § 3, we introduce the concept of a qth order dispersive stability function, and
we show that such a stability function generates Runge-Kutta methods that have
homogeneous phase errors of order q.

From § 4 on, we confine our considerations to DIRK methods. We first derive the
(dispersion) relations specifying a gth order dispersive stability function (we remark
that for explicit Runge-Kutta methods these relations can be found in [8]). It is shown
that there exists a one-parameter family of m-stage, pth order consistent DIRK methods
with homogeneous phase errors of order g =2(m—|p/2]). In §35, the dispersion
relations are solved for one-, two-, three-, and four-stage DIRK methods and the
resulting stability functions are constructed. These functions are dispersive of order
g=2m. The two-stage stability function turns out to be identical with the stability
function of the well-known DIRK method of Ngrsett [10].
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The actual construction of highly dispersive DIRK methods is given in § 6. Here,
a three- and a four-stage method are presented that are both A-stable and third-order
consistent, and that have homogeneous dispersion order ¢ =6 and g =8, respectively.

In § 7, these methods are applied to systems of linear differential equations in
which the oscillating solution component is dominating. The results are in perfect
agreement with the theory. Comparison with the DIRK methods of Ngrsett [10] and
Crouzeix [5] shows that the higher-order dispersive methods proposed in this paper
produce much more accurate results than conventional DIRK methods.

Finally, we remark that stepsize control can be based on reference formulas of
an explicit type that can be constructed along the lines indicated in [8].

2. The RK solution of the basic test equation. The general m-stage RK method
for the system of ODEs (1.1) is given by

(2.1&) Y"J =n +h Z ai’~f.( I, +Clh7 Ynl)’ .1 = 17 W (X
1=1

m

(2'1b) yni'l =yn+h Z bjf(’n-'_cfh; Ynj)a
j;.—]

where the RK parameters a;, b;, and ¢; are assumed to be real.
Application of the RK method (2.1) to the basic test equation (1.2) leads to the
recursions

m m
Yni =V +iv Z a.il Ynl + Sh elw,,l,, Z a,il el(',v’_,
121 1=1
(2.19)
m . n .
Ynr1=Yutiv Y bY, +8he“ ¥ b etr,
ji=1 J=1
where we have set
v = wh, v, = w,h.

Introducing the matrix A= (a;) and the vectors b=(b;), ¢=(¢;), Y,=(Y,), e,=
(exp (icv,)) and e= (1, - -, 1), we can write (2.1') in the compact form

(2.1") Y, =y,e+ivAY,+8he“"Ae,, v, =y, +ivhb Y, +8he“ b e,
From (2.1”) a recursion for y, can be derived:

(2.2) Vo1 =[1+ivb" (I —ivA) 'ely, +8he " "b [ +iv(I —ivA) 'Ale,.
It is convenient to define the rational functions (in z)

(2.3) R(z)=1+zb"(I-zA)"e,  Q(ziv,)=b"(I-zA) e,

so that the Runge-Kutta recursion for the test equation (1.2) is given by
(2.2 Vi1 = R(iv)y, + 8hQ(iv, iv,) e“r".

R(z) is known as the stability function of the RK method.
Let us write the solution of (2.2') in the explicit form

(2.4a) Vo =al[yo—dy ]+ d, e .

Then, by substitution into (2.2'), we derive

S8hQ(iv, iv,)

(2.4b) dl = R(lu), &()z e“"n— R(iv) .
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For the exact solution of the basic test equation we have

(2.5a) y(t) =a\[y(t)—ao eim"’“] +a, eiw”l",
(2.5b) a,;'=exp (iv),  a,: p—.

We shall compare the phases of the quantities a; and d; with the aim to derive
conditions for high-order phase errors.
DEFINITION 2.1. In the RK scheme (2.1) the functions

¢i(v)=arg l:g:l] =yp—arg[R(iv)],

ool v, U,,)3= arg [%] =arg [(exp (ivp)“’ R(iv) ]

" iv, — iv) Q(iv, iv,)
respectively, are called the homogeneous and inhomogeneous dispersion (or phase error,
phase lag). If ¢,=0(h*"") as h—0, with » constant, then the method is said to have
homogeneous dispersion order g. If ¢o= O(h") as h—>0, with & and w, constant, then
the method is said to have inhomogeneous dispersion order q.

Remark. We mention that the definition of homogeneous dispersion given above
is identical to the one used in [8]. Furthermore, it is closely related to the definition
of phase lag as given by Brusa and Nigro [1]. Their formulation is in terms of accurately
approximating the exponentials in the exact solution by the eigenvalues of the
amplification matrix of the numerical scheme. To be more precise, writing the roots
of the characteristic equation in the form

exp ({—a(v)xib(v)}v),

they define the phase lag (or frequency distortion) as the modulus of the leading term
in the expansion of b—1 in powers of v.

Furthermore, our definition of inhomogeneous dispersion is completely analogous
to the one used in the literature (see e.g. [7], [13]-[15]).

In comparing the numerical solution (2.4a) and the exact solution (2.5a), we
observe that the (complex) numbers @, and a, are raised to the power n. This means
that we may expect a linear accumulation of the phase error due to homogeneous
dispersion, since arg (ay)—arg(d}) = n(arg (a,) —arg (d,)) = n$,. On the other hand,
the phase error introduced by the inhomogeneous term (i.e., the difference in the
arguments of a, and d,) is independent of n and, consequently, constant in time.

Therefore, in computations with fixed stepsize h and large integration intervals
the homogenous dispersion is the most crucial source of phase errors; it causes the
numerical solution to become increasingly out of phase with the exact solution. Since
we usually want a solution that has an error that does not change too much over the
interval of integration, we will concentrate on the reduction of the magnitude of ¢,(v).
Consequently, when a method is called dispersive of order g we always mean that the
method has homogeneous dispersion order q.

2.1. Derivation of the order of dispersion. In the derivation of the functions ¢; we

need the functions R and Q defined in (2.3). In order to evaluate R and Q the following
lemma may be helpful.

LemMA 2.1. Let M be a nonsingular m X m matrix, and v and w m-dimensional
vectors. Then

_det[M+w']
det [M]

vIM 'w
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Proof. Let x:= M 'w and x,,,,'=1+v’x; then (x, x,,,,) satisfies the system of
m+1 equations:

Mll e Mlm 0] Xy Wy
= : b

Mml Tt Mmm OJ X W

- T “Vm 1 Xm+1 1

where M, are the entries of M, and x;, v;, w; the components of x, v, w. By Cramer’s
rule we may write

Xpps 1 = 1+vTM*'w=-—-—-j:[[Z]],
with
M w
N-= [_VT 1].
Subtracting the row vector w;(—v', 1) from the ith row of N(i=1, -, m) leads to
det[N]=det[M +wv']
which proves the lemma. a

Using this lemma we derive from (2.3) for R(z) the familiar expression (cf. [11,
p. 132])

det[I—zA+e-b'z]
det[I-zA] °

(2.6a) R(z)=

and for Q(z) we obtain

det{]—zA b7
(2.6b) Ql(z, iv,) = . [det [Zl jzeAp] ]_

Remark. We mention thatthe homogeneous and inhomogeneous dispersion orders
may be (quite) different. To illustrate this, consider the backward Euler method [9]
for which it can straightforwardly be verified that

é.(v)=v—arctan (v), (v, v,) = arctan (1;59_8_&&))
v—sin (v,)

showing that the backward Euler method has homogeneous and inhomogeneous orders
of dispersion g =2 and g =1, respectively.
For the trapezoidal rule [9] the situation is different. Here we obtain
2tan (v,/2) - v] o
v, =V ’

d),(u):u—arctan[l_v, Z:I’ dolv, v,,)=arg[

ab
Hence, the order of the homogeneous dispersion is g =2, whereas the inhomogeneous
dispersion is of infinite order, which is due to the symmetry of the trapezoidal rule
(see Thomas [15]).

3. Dispersive stability functions. ldeally, the stability function R(z) of an RK
method should be such that ¢,(v):= v —arg (R(iv)) vanishes identically. Although this
will not be possible, it is interesting to characterize the class of functions for which
¢,(v) does vanish identically. .

DerFiNITION 3.1. A function R(z) is said to be in class &, if ¢,(v)=
v—arg (R(iv))=0 on R, or equivalently,

(3.1) Im (R(iv))=tan (v) Re (R(iv)) onR.



218 P. J. VAN DER HOUWEN AND B. P. SOMMEIJER

THEOREM 3.1. A rational function R(z) with real coefficients is in class % . if and
only if its Taylor expansion is of the form

oc

(3.2) R(z)= % [éz_,-+z

J=0

j .
1+j 2j
> (=1 H')’:(hnﬁzt]z ’,
=0

where ﬁ(,=1 and B~2,B~4, - - - are arbitrary parameters in R, and where the vy, are the
coefficients in the Taylor expansion

(3.3) tan (z)=1z IZO yaiz?

Proof. 1t is straightforwardly verified that arg (R(iv))=v for veR and all real
ﬁ:,, j>0. Conversely, substituting a formal Taylor expansion for R into (3.1) leads
to expressions for the Taylor coefficients that are readily identified with those of
(3.2). 0

As an illustration, we give the first few terms of the expansion (3.2) explicitly:

~ 5 2 4 1 3 A 4 A 1~ 2 s
R(z)=1+z+B,z"+ Brs FAE N AR ﬁ4—;32+1—; z
(3.2) +8 °+<[§ _lﬁ" +_2_I§ —I]—>z7
' PozH\Pem3 Bt 573y

+ 8 s+</§ 125 Vg +__62_>w+
ST\ Pe T3P T s P15 7 T 0835
A trivial example of a function from %. is given by exp (z); it can be written in the
form (3.2) by defining B8,,=1/(2j)!.

It is convenient to introduce the notion of consistent and dispersive stability
functions.

DerINITION 3.2. (a) A given stability function R(z) is called consistent of order
p if

R(z)=exp (z)+0(z""").

(b) It is called dispersive of order q (or belonging to class %,) if there exists a
function R € 9, such that

R(z)=R(z2)+0(z*).

This definition is justified by the following theorem.

THEOREM 3.2. (a) A pth-order consistent RK method possesses a pth-order con-
sistent stability function.

(b) An RK method has homogeneous dispersion order g if and only if its stability
Sunction is dispersive of order q (belongs to 4,).

Proof. Assertion (a) of the theorem is well known (see, e.g., [6]).
_ The sufficient part of assertion (b) is proved as follows. Let Re &, i.e., R(z)=
R(z)+O(z**") with Re 9., then

¢1(v):=v—arg (R(iv)) = [v—arg (R(iv))]~[v - arg (R(iv))]
=arg (R(iv)/R(iv))=arg (1+ 0(v9"")) = O(v*""),

showing that the RK method has homogeneous dispersion order g.
Conversely, let ¢,(v)=O(v?"'"); then

Im (R(iv)) =tan (v) Re (R(iv))+O(v*"").
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On substitution of the Taylor expansion of the given function R(z) into this last
equation and using (3.3), we can show that the Taylor coefficients of R(z ) can be
identified with those of (3.2) up to order g. Hence, there exists a function Re 9, such
that R—R = O(z9'"). O

Evidently, any pth-order consistent RK method has homogeneous dispersion order
g = p. However, if p is odd, then we automatically get a one order higher homogeneous
phase error.

THEOREM 3.3. An RK method of consistency order p =2p,+1 has homogeneous
dispersion order q = 2p,+2.

Proof. According to Theorem 3.2(a) and Definition 3.2(a), the stability function
R(z) has a Taylor expansion of the form

)

1, 1 5 ,
4 R(z)=l+4z+=z'+ - +———" 3, . 22P"24 3, TN
(3.4) (z)=1 52 (Zp(,-f—l)!z +Bapiz +Bapi3Z
where the coefficients B,, j>2p,+1 are expressions in terms of the RK parameters.
Next we consider the function R(z ) with Bw, =1/(2l)! for I = p,, to obtain

1 + I ~ 3 +2 R} +3
(3.5) R(z)= Z li(—,)-—‘-kz Y (=1) )y Ty :]"_""'Bzm.mz'p" 210220,

Furthermore, using that e” —Zf ,2'/j! can be written in the form (3.2) and equating
the coefficients of z¥ "' in both expansions, we obtain the relation

) 1 1

3.6 1) S S—

(3.6) /Zo( Yo~ 11(21) (2j+1)!

Finally, by setting :B.l’p(ﬂl = B1,,+2 we may conclude from (3.4)-(3.6) that R(z) - R(z)=
O(z*™'?%), which proves the theorem. O

4. Derivation of dispersion relations. In[8] dispersion relations have been derived
for polynomial stability functions. In this paper we consider stability functions of the
form

m l
Yooz
(1+az)™’

If « =0 this function reduces to a polynomial and the results obtained in [8] apply.
For instance, the maximal attainable order of dispersion for polynomial stability
functions is given by

@ e (2]

In this section, it will be shown that in some cases this order of dispersion can be
raised to ¢ = §+2 by a judicious choice of a. To that end we need the dispersion
relations for stability functions of the nonpolynomial form (4.1). In principle, these
relations can be obtained from the relations derived for polynomial stability functions.
By expanding (4.1) in a Taylor series of the form

(4.1) R(z)=

a, ay, 7am€R'

R(z)= 5: Bz,

i=0

we find that the B8, are polynomials in « with coefficients that are linear in the «;, for
example,

Bo=cay, Bi=a, "a’o<m>a, B.= az——al(m)a +f¥0|:(m>‘“(m>:|a’l-
1 1 1 2
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We now use the dispersion relations derived in [8] for stability functions of the form

m

R(z)= .Z)sz".

These dispersion relations are linear relations in terms of the 3;, so that by substituting
our B-expressions, we obtain dispersion relations for stability functions of the form
(4.1) that are linear in «; but polynomial in c.

The approach outlined above leads to complicated formulas. Therefore, we prefer
to follow an alternative approach that expresses the dispersion relations in terms of
« and the parameters §; introduced in Theorem 3.1.

First of all we remark that g may be assumed to be even. This follows from the
results obtained in § 3 (see especially Theorem 3.3).

In the following it is convenient to introduce the vectors

ﬁtl = (E()a B~37 B'ﬁn crt ’étl)T

_ll_l..._l_" ...~T ”-—22
- a2!s4!s aﬁ!3ﬁﬁ+la ’,Bq s pP= > s

(4~3b) oy = (a(Ja Qp, """, am)Ta

the (m+1) by (g +1) matrix

<m>a0 0 0 0O --- 0
0

(Mar (") (2o 0 .
m m-—1 0)”

the (g —m) by (g +1) matrix
(4.3d)

0 o (m) " ( m ) ot m .
— @ o e « 1 . .
Bz(a) = m m-—1 1 ’
m m
0 e 0 )u " am . m . l
m m-1 1

and the (g +1) by (g/2+1) matrix
. ) ,

Yo

0 1

~%Y2 Yo
0 0 1

Ya ~Y2 Yo

(4.3a)

(4.3¢) B(a)=

(4.3¢) C=

0 e 0 0 1
(_1)“’“2)/27&1*2 o Ys TY2 Yo
L 0 e 0 0 0 1 i

Here, p is the order of consistency of (4.1) and g is even. Moreover, to let the definition
of the matrix B,(«) be meaningful, we require its dimensions to be positive, i.e., g> m.
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THEOREM 4.1. Let p be the order of consistency of (4.1) and let q be an even integer
>m. Then the stability function (4.1) is dispersive of order q if there exists a real vector
B, and a real « such that

(4.4a) By(a)CB, =0,
and if
(4.4b) @, =B,(a)CB,.

Proof. The Taylor expansion of the stability function is of the form
X ; ] 1 .
R(z)= Y Bz, B,.=_—' forj=0,1,---,p,
a0 J:
where the coefficients B;, j=p+1 are in R. From (4.1) it follows that

J m _
(4.5) a,—26,<j_l>a,-,=o, j=0,1,---,

1==0

where o; =0 for j > m. Using the notation (4.3) and introducing the vector

By=(Bo,Bi, B2, ", By) "
:(,, Lo Llg B)
21 p!
we deduce from Theorem 3.1 and (3.6) that Re @, if
(4.6) B, = CB,.
It follows from (4.5) that (again using the notation (4.3))
o, = B(a)B,, B,(a)B, =0.

On substitution of (4.6) we arrive at the relations (4.4). 0

CoRrROLLARY 4.1. Let (4.1) be consistent of order p and let g=g=2(m—|p/2})
(¢f. (4.2)). Then (4.4) determines a one-parameter family R(z; a) of stability functions
in 9;.

Proof. For each «, (4.4a) represents a linear system of ¢ —m equations for the
(g —p)/2 unknowns [§,;+2, ,3~,;.,,4, SR ﬁ‘, with p:=2|p/2]. By choosing g=2m—~p=§
the number of unknowns equals the number of equations. The parameter « can be
chosen such that the matrix of coefficients in this system is nonsingular, and hence a
unique solution exists. Then, on substitution of ¢=¢g and [~3q=[§q into (4.4b), the
vector e, can be calculated in terms of the parameter a. According to Theorem 4.1,
the resulting stability function is dispersive of order 4, i.e., it lies in 9. O

It has already been observed that the dispersion order can sometimes be raised
by two by a judicious choice of «. This happens when there exists a real value « such
that (4.4a) can be satisfied for g =g+2. To obtain a nontrivial solution for this
homogeneous system we must require a vanishing determinant. This results in a
polynomial equation in ¢, and it is not guaranteed that a solution « in R exists.
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5. Construction of highly dispersive stability functions.
5.1. The case m=1, p=1. Let us try to achieve order of dispersion g =4. The
dispersion relations (4.4a) reduce to

Yo 1 O 1
(5.1) vy, aty, 0} B.i=0.
—Y:a Yo 1| Bs

The first relation is satisfied if ﬁ2= —vya; the second relation reads
700‘2"" Y(zja +7y,=0,

which has no real solution (recall that y,=1, y,=13). Hence, ¢ =2 and, according to
(4.4b), a, = 1 + a. Thus, we have the first-order consistent and second-order dispersive
family

1+(1+a)z

(5.2) R(z;a)= (1+az)

5.2. The case m =2, p=1. We try q =6; (4.4a) reads

')’0042 -2 2a+y, 0 0 1
=2y, a’+ 2y 1 0|l B,
(5.3) 5 S Al Ly,
—y.a"t v, Yo =Y 2a+y, 0184
1

2y, -2y, a’+ 2y,

>

The first two equations are solved by

~ (2?’0”"0-’)('}’:'7’002)
Rt 3=;——“, =2y, — .
(5.4a) B, Yo+ 2a Ba e Yot 2«

The third equation then becomes, upon substitution of y,=1, y,= L va=2/15,
90a’+180a*+150a” +60e’ + 12+ 1 =0,

possessing the real root

(5.4b) a=-.2841643597- - -.

The fourth equation expresses [5(, in terms of [§2, ,§4, and a. The parameter vector «,
can now be computed by means of (4.4b). The resulting stability function reads

)_1+(2a+1)z+(a3+2a2+a+§,)zz/(a +5

(5.5) R(z; « (17 ar)

It is sixth-order dispersive if a is given by (5.4b) and fourth-order dispersive otherwise.

5.3. The case m =2, p =3. The corresponding dispersion relations can be derived
from (5.3) by setting B,=3. From (5.4a) it then follows that @ should satisfy

a’ta+i=0,

i.e., @ = —5£+/3/6. The resulting third-order consistent, fourth-order dispersive stability
function given by

_1+Qa+1)z+ (e’ +2a+3)7°

11
(5.6) R(z; a)= (It ar) , Z’Eigﬁ’

is identical with the stability function considered by Ngrsett [10].
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5.4. The case m =3, p =3. The dispersion relations (4.4a) with g =6 assume the
form

')’0043_3')’251’ Ja(a+y,) 1 0
"3')’302"")’4 013'*'3')’00‘2"72 Jat+y, 0
a(=y:a’+3y,)  a(ye’=3y) 3alat+y) 1

The first equation is solved by
(5.7a) B~4=~y(,a3+3y3a—%a(o¢+y(,),
and the second equation becomes
90a*+150a’ +75¢ + 15a + 1 =0.

This equation has the real solutions
(5.7b) a'l'=-.1363337707 - - -, o' =—97567 45887 - - - .

The last equation expresses ,l§6 in terms of « and [§4 so that, by (4.4b), the parameter
vector a3 can be computed. The resulting stability function is given by
1+ @a+1)z+(Be’+3a+ )+ (e +3a’ +la+) 2
- (1+az)’ ’

It is third-order consistent; if « is given by (5.7b), then it is sixth-order dispersive,
and fourth-order dispersive otherwise.

(5.8) R(z; «)

5.5. The case m =4, p =3. To achieve order of dispersion g =8, the system

Yot =6y T+ v, 4o’ + 6y, 07~ v, 4o+ v, 0 0 Il
59 —dy,a’+4y,a at+ay,a’~4y,a 6a” +4y,a 1 o]l ;2 -
(3-9) et oyat v,y =6y, ty,  dat+6y,al—y, da+y, O 134 =0
4y, ~dy,a ~4y,a’t +4y,a tv4+4y“a“-4y3u 6a’+4y,a 1 gh
%

requires a real solution (a, [§). . .
From the first and second equation, B, and B, are readily solved:

ﬁ4 = _(')'na’4+2a’3+(3')’U"672)012+ '}’4_5')’2)/(40’ + ),

5

B~~ @
¢ 4a+y,

, 35 ,
[6V<)a4+(10+476)a3+<7 70—207:>a'+ 10yo(yo=2v)a +5y,— 10%]-

On substitution into the third equation, and using the actual values for the y’'s, we
obtain an equation for the parameter «,

60’ +144a°+126a° +56a + 140  +2a’ +{%a +515=0,
possessing three real roots given by
(5.10) a'"=-.10058 35034 - - ,a'*'=—.18716 71826 - - - ,a'>' = —1.12972 65662 - - - .

Finally, ,éx follows from the last equation in (5.9) and the vector a, is determined by
(4.4b). The stability function takes the form
(5.11) R(z;a)=
1+ (da+1)z+ (60’ +4a+ Y22+ (4o’ +6a’ +2a +1) 2+ (et +4a* +3a’ +ia + ) 2*
(1+az)* ’

This family furnishes sixth-order dispersive stability functions for all real «; in the
particular case of (5.10) these functions are eighth-order dispersive.
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6. Construction of third-order DIRK schemes. Let us start with an m-stage DIRK
scheme, generated by the parameter matrix

-a | —«a
¢y sy +a -
I 0 ata  —a
(61) Cm-z . . .
Cual O cee s 0 c¢hta -«
Cm 0 e « . e 0 C,"+a —a
O O l—b,,, bm
By this special choice, its implementation on a computer will require only a few arrays.
The parameters ¢,, - -, ¢, -> Will be used to adapt its stability function to the
form required by the dispersion considerations (cf. § 5); « is prescribed and ¢,,_,, ¢,
and b,, will be required to satisfy the set of equations
(6-23) (1 —'bm)cm~1+bmcm =flia
(6-2b) (l_bm)cin—-l-‘l_bmc%n:%,
(6~2C) (1 - brrz)[(cn1~l + a)cm~2 - Cmfla] + bm[(cm + (X)Cm.._.l - Crna] = f]xs

yielding third-order accuracy.

6.1. The case m =3. For a three-stage method, there are no free c-parameters left,
because ¢,,_»=c¢, = —a. However, as any three-stage, third-order DIRK scheme (with
« prescribed) has the same stability function (i.e., the function R(z; «), given by (5.8)),
there is no need for any adaptation. Hence, solving (6.2) results automatically in a
scheme that possesses the required stability function. From (6.2a) and (6.2b) we easily
deduce

5
(%h cmwl)_

1 2
§_Cm—l+cmvl

sl
Ny
o
=
i

11
- = b bln =

1
37 Oy

(6.3a) Cm =

)

and, on substitution, (6.2¢) requires that ¢, _, satisfy

N ala+2)+2/3
6.3b 6ch 1 —9Ch FdCy  —— =
( ) 1 1 1 2Cl +1
Hence, for any value of a, we obtain at least one set of real parameters {c,, ., ¢, bn}.

For the special a-values given by (5.7b), this scheme is sixth-order dispersive. It
turns out that for @ = a'?, the stability function (5.8) is A-acceptable; that is, R(z, a'?),
which is a rational approximation to e°, satisfies |R(z, a'*')| <1 whenever Re z <0 (cf.
[9, p. 237]). On the contrary, @ = «‘"’ leads to a conditionally stable scheme. Hence,
for m =3, we will use @ = a'”, yielding the scheme

—a | —a a=—0.97567 45887,
oy 5+ - > = .
(6.4) ¢ | ata a with ¢;=0.11484 20358,
o] 0 a+a —a ¢, =0.71636 14441,
| 0 1-by, by by =0.64030 84570.

6.2. The case m =4. To construct a four-stage method, we again impose the order
conditions (6.2), but now the resulting scheme does not automatically yield the stability
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function as given by (5.11). In general, the coefficient of z* in the numerator will be
different. Therefore, we derived this coefficient for scheme {(6.1), m =4} (cf. (2.6a)),
and we identified the resulting expression with the corresponding expression in the
required stability function (5.11). This equation, together with (6.2) was solved numeri-
cally for the unknowns ¢, ¢, ¢;, and b,. For all values of «, the resulting scheme is
sixth-order dispersive. However, if we employ the special a-values given by (5.10),
this order can be increased to eight. It turned out that only «"' yields an A-acceptable
stability function, whereas a''’ and '’ result in schemes with very poor stability
characteristics, especially along the imaginary axis.
Hence, for m =4, we will use {(6.1), @ = «'*'} leading to the scheme

-a | —a a=—1.12972 65662,

e | eta  —a © ,=0.50160 90786,

(6.5) | 0 eta  -a with ¢, ~0.72199 89658,
¢ | 0 0 c+a -—a ¢3=0.12462 28759,

[0 0 1-b, b, b, =0.37162 34539.

7. Numerical experiments. We have applied the methods (6.4) and (6.5), and the
“conventional” methods

—a -«
1+a |1+20—« 1 1
. = — —+__
(7.1) ll [ (z 6ﬁ>
2 2
of Ngrsett [10], and
1 1
“(1+y) | = (1+
2( Y) 2( Y)
1 1 1
- -~y -+
(7.2) 2 27 2( Y) —icos<1>
< YT AN

[SS R

1
5(1—7) 1+y  -1-2y —(1+v)
ot
6y’ 3y? 67’

of Crouzeix [5] (see also Burrage [2]). All methods are A-stable; a further specification
is given below:

Method m P q | R ()]
(7.1) 2 3 4 0.732
(7.2) 3 4 4 0.630
(6.4) 3 3 6 0.679
(6.5) 4 3 8 0.655

Note that the methods of Ngrsett and Crouzeix have optimal algebraic order, i.e.,
p=m-+1.

In our numerical experiments, the accuracy was measured by the number of correct
significant digits of the first component of the numerical solution at the endpoint
T = ty, i.e., the value of sd := —log,, |y"(T) — y¥|. If T coincides with a zero of y'"'(1),
then this value can be used for a mutual comparison of the phase errors of the various

methods (cf. [8]).
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TaBLE 7.1
Problem (7.3) withw =5 and T= 1001(7/2w).

Method h=7n/l6w h=7/320 h=n/640 h=7/128w p.,

(7.1) 11 19 31 43 4
(7.2) 0.6 1.7 28 4.0 4
(6.4) 2.1 3.6 53 7.1 6
(6.5) 3.0 5.1 7.5 9.9 8

7.1. A model problem. Consider the equation

d 0 o
(7.3) ;};= [__w O]y, weR

with initial condition y(0)=(1, 0)". The exact solution is given by
[cos (wt)]
y=1 . .
sin (wt)
This problem belongs to the class of model problems to which the theory of the
preceding sections applies. In Table 7.1 the sd(h)-values are presented for w =35,
T =1001(r/2w) and for various integration steps h. In addition, we list the effective

order p.q'= (sd(h)—sd(2h))/log, (2). These results show that the etfective order is
just the order of dispersion g as predicted by the theory.

7.2. A stiff problem with oscillating solution. In order to illustrate the A-stability
of the various methods, we consider the problem

113+1000t 26+200¢ —16-200¢
={ —374-2500t —86—500t 53+500¢ |y,

191+3000t 44+600t —27-600¢

Y

7.4
e y(0)=(-1,51";

the first component of the exact solution is given by
y(t)=sin (1) =3 cos (1) +2 exp (—5017).

Evidently, this problem is highly stiff; the solution consists of undamped oscillating
components and a rapidly decaying component (the stiff component).

In the numerical experiments, the initial phase was integrated using extremely
small steps in order to avoid errors coming from the transient phase. From ¢ =1 on,
the steps used are those listed in Table 7.2. The superiority of the methods with high
dispersion order is again clear from these results.

TABLE 7.2
Problem (7.4) with T =107 +arctan (3) and h=(T—1)/N.

Method N =50 N=100 N =200 N =400 Pen
(1.1) 02 1.1 2.2 3.4 4
(7.2) 1.1 1.0 2.1 3.2 ~3.7
(6.4) 053 18 3.5 5.3 6
(6.5) 0.7 2.4 47 7.7 ~9
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7.3. The effect of changing frequencies. In the preceding problems the frequencies
of the oscillating solution components did not depend on . We now show the influence
of a variable frequency on the accuracy of the numerical solution. For this purpose,
we again consider problem (7.4). Let us denote the entries of the matrix occurring in
(7.4) by a;;+ b, ;1. If these entries are replaced by

(7.5) a; ;(1+2et)+b, ;t, £ constant,

we obtain a problem, the solution of which no longer has a constant frequency. For
instance,

y'"'(t) =sin (wt) —3 cos (wt) +2 exp (=5017),

where the frequency w =1+¢t. The analogue of Table 7.2 is given in Table 7.3 for
=10 "and ¢ = 10 "". These results clearly show the drop in accuracy of the high-order
dispersive methods (6.4) and (6.5), whereas the conventional methods (7.1) and (7.2)
lose only a small amount of their sd-values. However, the higher-order dispersive
methods are still superior to the conventional methods.

7.4. The effect of damped oscillations. Finally, we consider the behaviour of the
high-order dispersive methods in problems with damped oscillations. As a test equation
we take Bessel’s equation

dy dy
7.6 tT—=+t—+ty=0, 100=s1=T
(7.6) a Y
with the solution y(t) = J,(t).
By writing this second-order equation as a system of first-order equations we can
apply the various DIRK methods.
Table 7.4 presents results for T equaling the hundredth zero of J(¢),i.e., T = Z,y,'=

313.3742660775. Although the high-order dispersive methods furnish more accurate

TABLE 7.3
Problem (7.5) with T=[107 +arctan (3)]/(1+¢T) and h=(T~-1)/N.

Method € N =50 N =100 N =200 N = 400 Pen
(7.1) 10 2 0.2 1.0 2.2 3.4 4
(7.2) 1072 1.4 1.0 2.0 3.2 4
(6.4) 102 0.4 1.7 3.2 4.5 ~4.5
(6.5) 10 2 0.6 2.1 3.3 4.2 ~3.5
(7.1 1071 0.1 0.9 2.0 3.1 ~3.7
(7.2) 107! 0.8 0.9 1.8 2.9 ~35
(6.4) 10! 0.3 1.4 2.8 4.1 ~4.5
(6.5) 10! 0.4 1.7 2.9 3.7 ~3.5

TABLE 7.4

Problem (7.6) with T=2,,, and h=(T -10)/ N.

Method ~ N=1000 N =2000 N=4000 N =8000 Py

(7.1) 2.3 32 4.3 5.4 ~3.5
(7.2) 2.1 3.0 4.2 5.3 ~4
(6.4) 2.9 4.1 5.1 6.0 ~3
(6.5) 3.3 4.3 5.2 6.1 3
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results than the methods of Ngrsett and Crouzeix, they do not show the order of
dispersion g, but instead, their algebraic order p. The reason is, of course, the
1/Vt-behaviour of the amplitude of the solution y(r) (recall that J,(t)~
constant - cos (1 —m/4)t”"? as t-»00). In order to illustrate this we transform (7.6) in
such a way that the transformed equation has an undamped solution. Writing ¢ =107
and y(t) =10t 3(f), we obtain

dy
di*

1
47’

(7.6") +(100+ ))7=0, 1=s7=

10

with the undamped solution y(7) =J7 J,(107). For this problem the results listed in
Table 7.4’ do show the order of dispersion g rather nicely.

TABLE 7.4
Problem (7.6') with T = Z,y, and h =(T~10)/(10N).

Method N =1000 N =2000 N =4000 N =8000 P

eff

(7.1) 1.5 2.5 3.6 4.8 4
(7.2) 1.3 2.2 3.4 4.6 4
(6.4) 22 3.8 5.5 7.3 6
(6.5) 2.8 4.9 7.4 8.7 8
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